Prenatal exposure to organophosphate esters and cognitive development in young children in the Pregnancy, Infection, and Nutrition Study

Brett T. Doherty, Kate Hoffman, Alexander P. Keil, Stephanie Engel, Heather M. Stapleton, Barbara D. Goldman, Andrew F Olshan, Julie L Daniels

Research output: Contribution to journalArticle

Abstract

Organophosphate esters (OPEs) are a class of chemicals commonly used as flame retardants and plasticizers. OPEs are applied to a wide variety of consumer products and have a propensity to leach from these products. Consequently, OPEs are ubiquitous contaminants in many human environments and human exposure is pervasive. Accumulating evidence suggests that OPEs are capable of interfering with childhood cognitive development through both neurologic- and endocrine-mediated mechanisms. However, observational evidence of cognitive effects is limited. We used data collected in the third phase of the Pregnancy, Infection, and Nutrition Study to investigate cognitive effects of prenatal exposure to OPEs. In a spot prenatal maternal urine sample, we measured the following OPE metabolites: diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl phosphate) (BDCIPP), isopropyl-phenyl phenyl phosphate (ip-PPP), and 1-hydroxyl-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP). We assessed children's language and multi-faceted and overall cognitive development between two and three years of age using the MacArthur-Bates Communicative Development Inventories (MB-CDI) and the Mullen Scales of Early Learning (MSEL). We used linear regression to estimate the change in children's scores on these developmental assessments per interquartile range (IQR) increase in log-transformed, specific-gravity-corrected prenatal OPE metabolite concentrations, adjusted for maternal age, education, income, race/ethnicity, BMI, and child's sex. A total of 149 children had both OPE metabolite measurements and MB-CDI scores, and 227 children had both OPE metabolite measurements and MSEL scores. We observed that higher concentrations of ip-PPP (ng/ml) were associated with lower scores on the MSEL Cognitive Composite Score (β = −2.61; 95% CI: −5.69, 0.46), and separately on two of the four MSEL Scales that comprise the Cognitive Composite, specifically the Fine Motor Scale (β = −3.08; 95% CI: −5.26, −0.91) and the Expressive Language Scale (β = −1.21; 95% CI: −2.91, 0.49). We similarly observed that prenatal ip-PPP concentrations were inversely associated with age-standardized scores on the MB-CDI Vocabulary assessment (β = −1.19; 95% CI: −2.53, 0.16). Other OPE metabolites were not strongly associated with performance on either assessment. Our results suggest that isopropylated triarylphosphate isomers, the presumed parent compounds of ip-PPP, may adversely impact cognitive development, including fine motor skills and early language abilities. Our study contributes to the growing body of observational evidence that suggests prenatal exposure to OPEs may adversely affect cognitive development.

LanguageEnglish (US)
Pages33-40
Number of pages8
JournalEnvironmental Research
Volume169
DOIs
StatePublished - Feb 1 2019

Fingerprint

Prenatal Nutritional Physiological Phenomena
Flame Retardants
Organophosphates
organophosphate
Nutrition
pregnancy
ester
nutrition
Esters
Infection
Phosphates
Metabolites
phosphate
metabolite
learning
Learning
Equipment and Supplies
young
exposure
infection

Keywords

  • Cognitive
  • Flame Retardant
  • Neurodevelopment
  • OPE
  • OPFR
  • Organophosphate

ASJC Scopus subject areas

  • Biochemistry
  • Environmental Science(all)

Cite this

Prenatal exposure to organophosphate esters and cognitive development in young children in the Pregnancy, Infection, and Nutrition Study. / Doherty, Brett T.; Hoffman, Kate; Keil, Alexander P.; Engel, Stephanie; Stapleton, Heather M.; Goldman, Barbara D.; Olshan, Andrew F; Daniels, Julie L.

In: Environmental Research, Vol. 169, 01.02.2019, p. 33-40.

Research output: Contribution to journalArticle

@article{88c88e5fc13f432bbc9da217c4e1c130,
title = "Prenatal exposure to organophosphate esters and cognitive development in young children in the Pregnancy, Infection, and Nutrition Study",
abstract = "Organophosphate esters (OPEs) are a class of chemicals commonly used as flame retardants and plasticizers. OPEs are applied to a wide variety of consumer products and have a propensity to leach from these products. Consequently, OPEs are ubiquitous contaminants in many human environments and human exposure is pervasive. Accumulating evidence suggests that OPEs are capable of interfering with childhood cognitive development through both neurologic- and endocrine-mediated mechanisms. However, observational evidence of cognitive effects is limited. We used data collected in the third phase of the Pregnancy, Infection, and Nutrition Study to investigate cognitive effects of prenatal exposure to OPEs. In a spot prenatal maternal urine sample, we measured the following OPE metabolites: diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl phosphate) (BDCIPP), isopropyl-phenyl phenyl phosphate (ip-PPP), and 1-hydroxyl-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP). We assessed children's language and multi-faceted and overall cognitive development between two and three years of age using the MacArthur-Bates Communicative Development Inventories (MB-CDI) and the Mullen Scales of Early Learning (MSEL). We used linear regression to estimate the change in children's scores on these developmental assessments per interquartile range (IQR) increase in log-transformed, specific-gravity-corrected prenatal OPE metabolite concentrations, adjusted for maternal age, education, income, race/ethnicity, BMI, and child's sex. A total of 149 children had both OPE metabolite measurements and MB-CDI scores, and 227 children had both OPE metabolite measurements and MSEL scores. We observed that higher concentrations of ip-PPP (ng/ml) were associated with lower scores on the MSEL Cognitive Composite Score (β = −2.61; 95{\%} CI: −5.69, 0.46), and separately on two of the four MSEL Scales that comprise the Cognitive Composite, specifically the Fine Motor Scale (β = −3.08; 95{\%} CI: −5.26, −0.91) and the Expressive Language Scale (β = −1.21; 95{\%} CI: −2.91, 0.49). We similarly observed that prenatal ip-PPP concentrations were inversely associated with age-standardized scores on the MB-CDI Vocabulary assessment (β = −1.19; 95{\%} CI: −2.53, 0.16). Other OPE metabolites were not strongly associated with performance on either assessment. Our results suggest that isopropylated triarylphosphate isomers, the presumed parent compounds of ip-PPP, may adversely impact cognitive development, including fine motor skills and early language abilities. Our study contributes to the growing body of observational evidence that suggests prenatal exposure to OPEs may adversely affect cognitive development.",
keywords = "Cognitive, Flame Retardant, Neurodevelopment, OPE, OPFR, Organophosphate",
author = "Doherty, {Brett T.} and Kate Hoffman and Keil, {Alexander P.} and Stephanie Engel and Stapleton, {Heather M.} and Goldman, {Barbara D.} and Olshan, {Andrew F} and Daniels, {Julie L}",
year = "2019",
month = "2",
day = "1",
doi = "10.1016/j.envres.2018.10.033",
language = "English (US)",
volume = "169",
pages = "33--40",
journal = "Environmental Research",
issn = "0013-9351",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - Prenatal exposure to organophosphate esters and cognitive development in young children in the Pregnancy, Infection, and Nutrition Study

AU - Doherty, Brett T.

AU - Hoffman, Kate

AU - Keil, Alexander P.

AU - Engel, Stephanie

AU - Stapleton, Heather M.

AU - Goldman, Barbara D.

AU - Olshan, Andrew F

AU - Daniels, Julie L

PY - 2019/2/1

Y1 - 2019/2/1

N2 - Organophosphate esters (OPEs) are a class of chemicals commonly used as flame retardants and plasticizers. OPEs are applied to a wide variety of consumer products and have a propensity to leach from these products. Consequently, OPEs are ubiquitous contaminants in many human environments and human exposure is pervasive. Accumulating evidence suggests that OPEs are capable of interfering with childhood cognitive development through both neurologic- and endocrine-mediated mechanisms. However, observational evidence of cognitive effects is limited. We used data collected in the third phase of the Pregnancy, Infection, and Nutrition Study to investigate cognitive effects of prenatal exposure to OPEs. In a spot prenatal maternal urine sample, we measured the following OPE metabolites: diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl phosphate) (BDCIPP), isopropyl-phenyl phenyl phosphate (ip-PPP), and 1-hydroxyl-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP). We assessed children's language and multi-faceted and overall cognitive development between two and three years of age using the MacArthur-Bates Communicative Development Inventories (MB-CDI) and the Mullen Scales of Early Learning (MSEL). We used linear regression to estimate the change in children's scores on these developmental assessments per interquartile range (IQR) increase in log-transformed, specific-gravity-corrected prenatal OPE metabolite concentrations, adjusted for maternal age, education, income, race/ethnicity, BMI, and child's sex. A total of 149 children had both OPE metabolite measurements and MB-CDI scores, and 227 children had both OPE metabolite measurements and MSEL scores. We observed that higher concentrations of ip-PPP (ng/ml) were associated with lower scores on the MSEL Cognitive Composite Score (β = −2.61; 95% CI: −5.69, 0.46), and separately on two of the four MSEL Scales that comprise the Cognitive Composite, specifically the Fine Motor Scale (β = −3.08; 95% CI: −5.26, −0.91) and the Expressive Language Scale (β = −1.21; 95% CI: −2.91, 0.49). We similarly observed that prenatal ip-PPP concentrations were inversely associated with age-standardized scores on the MB-CDI Vocabulary assessment (β = −1.19; 95% CI: −2.53, 0.16). Other OPE metabolites were not strongly associated with performance on either assessment. Our results suggest that isopropylated triarylphosphate isomers, the presumed parent compounds of ip-PPP, may adversely impact cognitive development, including fine motor skills and early language abilities. Our study contributes to the growing body of observational evidence that suggests prenatal exposure to OPEs may adversely affect cognitive development.

AB - Organophosphate esters (OPEs) are a class of chemicals commonly used as flame retardants and plasticizers. OPEs are applied to a wide variety of consumer products and have a propensity to leach from these products. Consequently, OPEs are ubiquitous contaminants in many human environments and human exposure is pervasive. Accumulating evidence suggests that OPEs are capable of interfering with childhood cognitive development through both neurologic- and endocrine-mediated mechanisms. However, observational evidence of cognitive effects is limited. We used data collected in the third phase of the Pregnancy, Infection, and Nutrition Study to investigate cognitive effects of prenatal exposure to OPEs. In a spot prenatal maternal urine sample, we measured the following OPE metabolites: diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl phosphate) (BDCIPP), isopropyl-phenyl phenyl phosphate (ip-PPP), and 1-hydroxyl-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP). We assessed children's language and multi-faceted and overall cognitive development between two and three years of age using the MacArthur-Bates Communicative Development Inventories (MB-CDI) and the Mullen Scales of Early Learning (MSEL). We used linear regression to estimate the change in children's scores on these developmental assessments per interquartile range (IQR) increase in log-transformed, specific-gravity-corrected prenatal OPE metabolite concentrations, adjusted for maternal age, education, income, race/ethnicity, BMI, and child's sex. A total of 149 children had both OPE metabolite measurements and MB-CDI scores, and 227 children had both OPE metabolite measurements and MSEL scores. We observed that higher concentrations of ip-PPP (ng/ml) were associated with lower scores on the MSEL Cognitive Composite Score (β = −2.61; 95% CI: −5.69, 0.46), and separately on two of the four MSEL Scales that comprise the Cognitive Composite, specifically the Fine Motor Scale (β = −3.08; 95% CI: −5.26, −0.91) and the Expressive Language Scale (β = −1.21; 95% CI: −2.91, 0.49). We similarly observed that prenatal ip-PPP concentrations were inversely associated with age-standardized scores on the MB-CDI Vocabulary assessment (β = −1.19; 95% CI: −2.53, 0.16). Other OPE metabolites were not strongly associated with performance on either assessment. Our results suggest that isopropylated triarylphosphate isomers, the presumed parent compounds of ip-PPP, may adversely impact cognitive development, including fine motor skills and early language abilities. Our study contributes to the growing body of observational evidence that suggests prenatal exposure to OPEs may adversely affect cognitive development.

KW - Cognitive

KW - Flame Retardant

KW - Neurodevelopment

KW - OPE

KW - OPFR

KW - Organophosphate

UR - http://www.scopus.com/inward/record.url?scp=85056192444&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056192444&partnerID=8YFLogxK

U2 - 10.1016/j.envres.2018.10.033

DO - 10.1016/j.envres.2018.10.033

M3 - Article

VL - 169

SP - 33

EP - 40

JO - Environmental Research

T2 - Environmental Research

JF - Environmental Research

SN - 0013-9351

ER -