Direct administration of 2-Hydroxypropyl- Beta-Cyclodextrin into Guinea pig cochleae: Effects on physiological and histological measurements

J. T. Lichtenhan, K. Hirose, C. A. Buchman, R. K. Duncan, A. N. Salt

Research output: Contribution to journalArticle

  • 3 Citations

Abstract

2-Hydroxypropyl-Beta-Cyclodextrin (HPβCD) can be used to treat Niemann-Pick type C disease, Alzheimer's disease, and atherosclerosis. But, a consequence is that HPβCD can cause hearing loss. HPβCD was recently found to be toxic to outer hair cells (OHCs) in the organ of Corti. Previous studies on the chronic effects of in vivo HPβCD toxicity did not know the intra-cochlear concentration of HPβCD and attributed variable effects on OHCs to indirect drug delivery to the cochlea. We studied the acute effects of known HPβCD concentrations administered directly into intact Guinea pig cochleae. Our novel approach injected solutions through pipette sealed into scala tympani in the cochlear apex. Solutions were driven along the length of the cochlear spiral toward the cochlear aqueduct in the base. This method ensured that therapeutic levels were achieved throughout the cochlea, including those regions tuned to mid to low frequencies and code speech vowels and background noise. A wide variety of measurements were made. Results were compared to measurements from ears treated with the HPβCD analog methyl-β-cyclodextrin (MβCD), salicylate that is well known to attenuate the gain of the cochlear amplifier, and injection of artificial perilymph alone (controls). Histological data showed that OHCs appeared normal after treatment with a low dose of HPβCD, and physiological data was consistent with attenuation of cochlear amplifier gain and disruption of non-linearity associated with transferring acoustic sound into neural excitation, an origin of distortion products that are commonly used to objectively assess hearing and hearing loss. A high dose of HPβCD caused sporadic OHC losses and markedly affected all physiologic measurements. MβCD caused virulent destruction of OHCs and physiologic responses. Toxicity of HPβCD to OHC along the cochlear length is variable even when a known intra-cochlear concentration is administered, at least for the duration of our acute studies.

LanguageEnglish (US)
Article numbere0175236
JournalPloS one
Volume12
Issue number4
DOIs
StatePublished - Apr 1 2017

Fingerprint

Outer Auditory Hair Cells
beta-cyclodextrin
Cochlea
Audition
guinea pigs
hairs
Guinea Pigs
Toxicity
hearing
Salicylates
Poisons
cells
Drug delivery
Acoustics
Cells
Acoustic waves
Tympanis
toxicity
Hearing Loss
salicylates

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Direct administration of 2-Hydroxypropyl- Beta-Cyclodextrin into Guinea pig cochleae : Effects on physiological and histological measurements. / Lichtenhan, J. T.; Hirose, K.; Buchman, C. A.; Duncan, R. K.; Salt, A. N.

In: PloS one, Vol. 12, No. 4, e0175236, 01.04.2017.

Research output: Contribution to journalArticle

@article{a0266cc4766b4eaba84614e98407b9f7,
title = "Direct administration of 2-Hydroxypropyl- Beta-Cyclodextrin into Guinea pig cochleae: Effects on physiological and histological measurements",
abstract = "2-Hydroxypropyl-Beta-Cyclodextrin (HPβCD) can be used to treat Niemann-Pick type C disease, Alzheimer's disease, and atherosclerosis. But, a consequence is that HPβCD can cause hearing loss. HPβCD was recently found to be toxic to outer hair cells (OHCs) in the organ of Corti. Previous studies on the chronic effects of in vivo HPβCD toxicity did not know the intra-cochlear concentration of HPβCD and attributed variable effects on OHCs to indirect drug delivery to the cochlea. We studied the acute effects of known HPβCD concentrations administered directly into intact Guinea pig cochleae. Our novel approach injected solutions through pipette sealed into scala tympani in the cochlear apex. Solutions were driven along the length of the cochlear spiral toward the cochlear aqueduct in the base. This method ensured that therapeutic levels were achieved throughout the cochlea, including those regions tuned to mid to low frequencies and code speech vowels and background noise. A wide variety of measurements were made. Results were compared to measurements from ears treated with the HPβCD analog methyl-β-cyclodextrin (MβCD), salicylate that is well known to attenuate the gain of the cochlear amplifier, and injection of artificial perilymph alone (controls). Histological data showed that OHCs appeared normal after treatment with a low dose of HPβCD, and physiological data was consistent with attenuation of cochlear amplifier gain and disruption of non-linearity associated with transferring acoustic sound into neural excitation, an origin of distortion products that are commonly used to objectively assess hearing and hearing loss. A high dose of HPβCD caused sporadic OHC losses and markedly affected all physiologic measurements. MβCD caused virulent destruction of OHCs and physiologic responses. Toxicity of HPβCD to OHC along the cochlear length is variable even when a known intra-cochlear concentration is administered, at least for the duration of our acute studies.",
author = "Lichtenhan, {J. T.} and K. Hirose and Buchman, {C. A.} and Duncan, {R. K.} and Salt, {A. N.}",
year = "2017",
month = "4",
day = "1",
doi = "10.1371/journal.pone.0175236",
language = "English (US)",
volume = "12",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "4",

}

TY - JOUR

T1 - Direct administration of 2-Hydroxypropyl- Beta-Cyclodextrin into Guinea pig cochleae

T2 - PLoS One

AU - Lichtenhan, J. T.

AU - Hirose, K.

AU - Buchman, C. A.

AU - Duncan, R. K.

AU - Salt, A. N.

PY - 2017/4/1

Y1 - 2017/4/1

N2 - 2-Hydroxypropyl-Beta-Cyclodextrin (HPβCD) can be used to treat Niemann-Pick type C disease, Alzheimer's disease, and atherosclerosis. But, a consequence is that HPβCD can cause hearing loss. HPβCD was recently found to be toxic to outer hair cells (OHCs) in the organ of Corti. Previous studies on the chronic effects of in vivo HPβCD toxicity did not know the intra-cochlear concentration of HPβCD and attributed variable effects on OHCs to indirect drug delivery to the cochlea. We studied the acute effects of known HPβCD concentrations administered directly into intact Guinea pig cochleae. Our novel approach injected solutions through pipette sealed into scala tympani in the cochlear apex. Solutions were driven along the length of the cochlear spiral toward the cochlear aqueduct in the base. This method ensured that therapeutic levels were achieved throughout the cochlea, including those regions tuned to mid to low frequencies and code speech vowels and background noise. A wide variety of measurements were made. Results were compared to measurements from ears treated with the HPβCD analog methyl-β-cyclodextrin (MβCD), salicylate that is well known to attenuate the gain of the cochlear amplifier, and injection of artificial perilymph alone (controls). Histological data showed that OHCs appeared normal after treatment with a low dose of HPβCD, and physiological data was consistent with attenuation of cochlear amplifier gain and disruption of non-linearity associated with transferring acoustic sound into neural excitation, an origin of distortion products that are commonly used to objectively assess hearing and hearing loss. A high dose of HPβCD caused sporadic OHC losses and markedly affected all physiologic measurements. MβCD caused virulent destruction of OHCs and physiologic responses. Toxicity of HPβCD to OHC along the cochlear length is variable even when a known intra-cochlear concentration is administered, at least for the duration of our acute studies.

AB - 2-Hydroxypropyl-Beta-Cyclodextrin (HPβCD) can be used to treat Niemann-Pick type C disease, Alzheimer's disease, and atherosclerosis. But, a consequence is that HPβCD can cause hearing loss. HPβCD was recently found to be toxic to outer hair cells (OHCs) in the organ of Corti. Previous studies on the chronic effects of in vivo HPβCD toxicity did not know the intra-cochlear concentration of HPβCD and attributed variable effects on OHCs to indirect drug delivery to the cochlea. We studied the acute effects of known HPβCD concentrations administered directly into intact Guinea pig cochleae. Our novel approach injected solutions through pipette sealed into scala tympani in the cochlear apex. Solutions were driven along the length of the cochlear spiral toward the cochlear aqueduct in the base. This method ensured that therapeutic levels were achieved throughout the cochlea, including those regions tuned to mid to low frequencies and code speech vowels and background noise. A wide variety of measurements were made. Results were compared to measurements from ears treated with the HPβCD analog methyl-β-cyclodextrin (MβCD), salicylate that is well known to attenuate the gain of the cochlear amplifier, and injection of artificial perilymph alone (controls). Histological data showed that OHCs appeared normal after treatment with a low dose of HPβCD, and physiological data was consistent with attenuation of cochlear amplifier gain and disruption of non-linearity associated with transferring acoustic sound into neural excitation, an origin of distortion products that are commonly used to objectively assess hearing and hearing loss. A high dose of HPβCD caused sporadic OHC losses and markedly affected all physiologic measurements. MβCD caused virulent destruction of OHCs and physiologic responses. Toxicity of HPβCD to OHC along the cochlear length is variable even when a known intra-cochlear concentration is administered, at least for the duration of our acute studies.

UR - http://www.scopus.com/inward/record.url?scp=85017145760&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85017145760&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0175236

DO - 10.1371/journal.pone.0175236

M3 - Article

VL - 12

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 4

M1 - e0175236

ER -