CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop

Research output: Research - peer-reviewArticle

  • 2 Citations

Abstract

The regulation of stem cell proliferation in plants is controlled by intercellular signaling pathways driven by the diffusible CLAVATA3 (CLV3p) peptide. CLV3p perception is thought to be mediated by an overlapping array of receptors in the stem cell niche including the transmembrane receptor kinase CLV1, Receptor-Like Protein Kinase 2 (RPK2), and a dimer of the receptor-like protein CLV2 and the CORYNE (CRN) pseudokinase. Mutations in these receptors have qualitatively similar effects on stem cell function but it is unclear if this represents common or divergent signaling outputs. Previous work in heterologous systems has suggested that CLV1, RPK2 and CLV2/CRN could form higher order complexes but it is also unclear what relevance these putative complexes have to in vivo receptor functions. Here I use the in vivo regulation of a specific transcriptional target of CLV1 signaling in Arabidopsis to demonstrate that, despite the phenotypic similarities between the different receptor mutants, CLV1 controls distinct signaling outputs in living stem cell niches independent of other receptors. This regulation is separable from stem cell proliferation driven by WUSCHEL, a proposed common transcriptional target of CLV3p signaling. In addition, in the absence of CLV1, CLV1-related receptor kinases are ectopically expressed but also buffer stem cell proliferation through the auto-repression of their own expression. Collectively these data reveal a unique in vivo role for CLV1 separable from other stem cell receptors and provides a framework for dissecting the signaling outputs in stem cell regulation.

LanguageEnglish (US)
Article numbere1006681
JournalPLoS Genetics
Volume13
Issue number3
DOIs
StatePublished - Mar 1 2017

Fingerprint

stem cells
cell proliferation
buffers
receptors
shoots
Buffers
Stem Cells
Cell Proliferation
shoot
regulation
protein
Stem Cell Niche
Protein Kinases
Phosphotransferases
niche
protein kinases
phosphotransferases (kinases)
niches
Arabidopsis
Peptides

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Cite this

@article{1be7d323e92b4a008e30c9978cb3b8d9,
title = "CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop",
abstract = "The regulation of stem cell proliferation in plants is controlled by intercellular signaling pathways driven by the diffusible CLAVATA3 (CLV3p) peptide. CLV3p perception is thought to be mediated by an overlapping array of receptors in the stem cell niche including the transmembrane receptor kinase CLV1, Receptor-Like Protein Kinase 2 (RPK2), and a dimer of the receptor-like protein CLV2 and the CORYNE (CRN) pseudokinase. Mutations in these receptors have qualitatively similar effects on stem cell function but it is unclear if this represents common or divergent signaling outputs. Previous work in heterologous systems has suggested that CLV1, RPK2 and CLV2/CRN could form higher order complexes but it is also unclear what relevance these putative complexes have to in vivo receptor functions. Here I use the in vivo regulation of a specific transcriptional target of CLV1 signaling in Arabidopsis to demonstrate that, despite the phenotypic similarities between the different receptor mutants, CLV1 controls distinct signaling outputs in living stem cell niches independent of other receptors. This regulation is separable from stem cell proliferation driven by WUSCHEL, a proposed common transcriptional target of CLV3p signaling. In addition, in the absence of CLV1, CLV1-related receptor kinases are ectopically expressed but also buffer stem cell proliferation through the auto-repression of their own expression. Collectively these data reveal a unique in vivo role for CLV1 separable from other stem cell receptors and provides a framework for dissecting the signaling outputs in stem cell regulation.",
author = "Nimchuk, {Zachary L.}",
year = "2017",
month = "3",
doi = "10.1371/journal.pgen.1006681",
volume = "13",
journal = "PLoS Genetics",
issn = "1553-7390",
publisher = "Public Library of Science",
number = "3",

}

TY - JOUR

T1 - CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop

AU - Nimchuk,Zachary L.

PY - 2017/3/1

Y1 - 2017/3/1

N2 - The regulation of stem cell proliferation in plants is controlled by intercellular signaling pathways driven by the diffusible CLAVATA3 (CLV3p) peptide. CLV3p perception is thought to be mediated by an overlapping array of receptors in the stem cell niche including the transmembrane receptor kinase CLV1, Receptor-Like Protein Kinase 2 (RPK2), and a dimer of the receptor-like protein CLV2 and the CORYNE (CRN) pseudokinase. Mutations in these receptors have qualitatively similar effects on stem cell function but it is unclear if this represents common or divergent signaling outputs. Previous work in heterologous systems has suggested that CLV1, RPK2 and CLV2/CRN could form higher order complexes but it is also unclear what relevance these putative complexes have to in vivo receptor functions. Here I use the in vivo regulation of a specific transcriptional target of CLV1 signaling in Arabidopsis to demonstrate that, despite the phenotypic similarities between the different receptor mutants, CLV1 controls distinct signaling outputs in living stem cell niches independent of other receptors. This regulation is separable from stem cell proliferation driven by WUSCHEL, a proposed common transcriptional target of CLV3p signaling. In addition, in the absence of CLV1, CLV1-related receptor kinases are ectopically expressed but also buffer stem cell proliferation through the auto-repression of their own expression. Collectively these data reveal a unique in vivo role for CLV1 separable from other stem cell receptors and provides a framework for dissecting the signaling outputs in stem cell regulation.

AB - The regulation of stem cell proliferation in plants is controlled by intercellular signaling pathways driven by the diffusible CLAVATA3 (CLV3p) peptide. CLV3p perception is thought to be mediated by an overlapping array of receptors in the stem cell niche including the transmembrane receptor kinase CLV1, Receptor-Like Protein Kinase 2 (RPK2), and a dimer of the receptor-like protein CLV2 and the CORYNE (CRN) pseudokinase. Mutations in these receptors have qualitatively similar effects on stem cell function but it is unclear if this represents common or divergent signaling outputs. Previous work in heterologous systems has suggested that CLV1, RPK2 and CLV2/CRN could form higher order complexes but it is also unclear what relevance these putative complexes have to in vivo receptor functions. Here I use the in vivo regulation of a specific transcriptional target of CLV1 signaling in Arabidopsis to demonstrate that, despite the phenotypic similarities between the different receptor mutants, CLV1 controls distinct signaling outputs in living stem cell niches independent of other receptors. This regulation is separable from stem cell proliferation driven by WUSCHEL, a proposed common transcriptional target of CLV3p signaling. In addition, in the absence of CLV1, CLV1-related receptor kinases are ectopically expressed but also buffer stem cell proliferation through the auto-repression of their own expression. Collectively these data reveal a unique in vivo role for CLV1 separable from other stem cell receptors and provides a framework for dissecting the signaling outputs in stem cell regulation.

UR - http://www.scopus.com/inward/record.url?scp=85016579701&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85016579701&partnerID=8YFLogxK

U2 - 10.1371/journal.pgen.1006681

DO - 10.1371/journal.pgen.1006681

M3 - Article

VL - 13

JO - PLoS Genetics

T2 - PLoS Genetics

JF - PLoS Genetics

SN - 1553-7390

IS - 3

M1 - e1006681

ER -